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Abstract

In this paper, we compare the experimentally and theoretically obtained single-mode responses of a cantilever
beam. The analytical portion involves solving an integro-di�erential equation via the method of multiple scales. For
the single-mode response, a large discrepancy is found between theory and experiment for an assumed ideal clamp

model. Through some experimental detective work, it was found, and later shown through analysis, that the
substitution of a torsionally elastic end for the ®xed support brought the theoretical and experimental results into
excellent agreement. The torsional spring has both linear and nonlinear (cubic) sti�ness components. 7 2000
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1. Introduction

In the study of structures, the modeling of boundary conditions, such as clamps, joints, and other

connectors is di�cult. In most analyses, the typical boundary conditions are free, sliding, clamped, and

pinned. Of course, at times, these idealizations are bound to fall short and it then becomes necessary to

raise the level of realism of the model. The most popular re®nement of the classical boundary conditions

is the substitution of rotational and translational springs to account for boundary ¯exibility (Gorman,

1975). Furthermore, damping elements and mass elements are added features that can improve the

ability of a mathematical model to approximate the response of a structure.

The results presented here are an extension of a study (Tabaddor and Nayfeh, 1997) on the

International Journal of Solids and Structures 37 (2000) 4915±4931

0020-7683/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(99 )00197-3

www.elsevier.com/locate/ijsolstr

1 Present address: Bell Labs, Lucent Technologies, 2000 NE Expressway, GA, 30071.

E-mail address: mtabaddor@bell-labs.com (M. Tabaddor).



multimode response of a cantilever beam near its fourth natural frequency. However, in this paper, we
focus on the single-mode nonlinear response of a cantilever beam near its fourth natural frequency. As
an outline, ®rst we begin with a simple survey of applicable research followed by a description of the
experimental setup. The succeeding sections detail the perturbation solution for a selected cantilever
beam model, a comparison of experimentally and theoretically obtained results, and an investigation of
the noted discrepancies. Finally, a revised theoretical model, that predicts the experimentally obtained
results better by accounting for the elasticity of the boundary, is presented.

2. Literature review

In this section, a brief review of references in the English technical literature relevant to the dynamics
of beams, mostly cantilever, is presented.

2.1. Theoretical modeling

Bypassing the complexity of a full three-dimensional elasticity analysis, Crespo da Silva and Glynn
(1978a, 1978b) derived nonlinear integro-partial-di�erential equations governing the nonplanar dynamics
of an isotropic, inextensional beam. The resulting equations, developed through the extended Hamilton's
principle, retain all nonlinearities up to the third order. Therefore, contributions from both nonlinear
curvature and nonlinear inertia were kept. The form of these equations allows for a solution based on
perturbation analyses (Nayfeh, 1973, 1981). Pai and Nayfeh (1992) developed a more comprehensive
beam theory, which fully accounts for geometric nonlinearities, including large rotations and
displacements and shear deformation. Hodges (1984, 1987a, 1987b), Pai and Nayfeh (1990) and Nayfeh
and Pai (1996) discussed the development of concepts in nonlinear beam kinematics. Hodges et al.
(1988) discussed some of the common mistakes in the nonlinear modeling of a cantilever beam.
Speci®cally, they addressed the issues of proper physical interpretation of the Euler angles and the
failure to obtain equations consistent to the order of approximation being considered.

Simplifying assumptions are common in engineering theories of beams (Donnell, 1976; Love, 1944).
They make the world easier to understand or, at least, to solve mathematically. E�orts to develop
equations of motion describing the behavior of a beam in a manner that lend themselves to a viable
solution have resulted in numerous modeling techniques (Boutaghou and Erdman, 1989; Haering et al.,
1992; Nayfeh and Pai, 1996; Crespo da Silva, 1991). Each researcher attempts to improve the
comprehensiveness of a model over previous models by accounting for various complicating e�ects, such
as torsion, rotary inertia, shear center eccentricity, warping, axial stretching, and general deformations.
The challenge is to include enough complexity so that the problem is meaningful and, yet, apply
simplifying assumptions that make the problem tractable (Suleman et al., 1995).

The advent of the digital computer has no doubt played a hand in the progress of dynamic modeling.
However, the use of numerical algorithms in the area of computational mechanics is not without its
dangers and blind faith in numerical answers should be avoided (Oden and Bathe, 1978). Nevertheless,
since for most nonlinear systems a closed-form solution is unattainable, recourse is made to
perturbation methods (Nayfeh, 1973, 1981) and hybrid perturbation-numerical methods (Nayfeh et al.,
1974; Nayfeh and Balachandran, 1995) for qualitative information about the solution space. A
combined qualitative and quantitative analysis is the most reassuring strategy in the tackling of
nonlinear problems.

M. Tabaddor / International Journal of Solids and Structures 37 (2000) 4915±49314916



2.2. Single-mode response

Nonlinear motions of beams vibrating in a manner essentially captured by a single mode were the
focus of early works cited in Ref. (Nayfeh and Mook, 1979). The characteristics of bending of the
frequency-response curve, amplitude jumps, limit cycles, and hysteresis are well documented for the case
of a single mode under the in¯uence of nonlinearity.

Dowell et al. (1977) compared linear and nonlinear theories with experiments for large deformations
of a cantilever, metallic beam due to a tip load. They concluded that the experimental results for various
frequency measurements were in close agreement with linear and nonlinear theories only for tip
de¯ections that are not a signi®cant fraction of the beam span.

Zavodney and Nayfeh (1989) compared experimental and analytical results for a parametrically
excited cantilever, metallic beam with a lumped mass. Their theoretical model contained nonlinear terms
up to the third order. The sources of the nonlinearities were the inertia, curvature, and axial
displacement (produced by a large transverse de¯ection). They concentrated on single-mode planar
motions. They experimentally documented jumps in the frequency-response curves for metallic and
composite beams. The jump points varied with increasing acceleration levels. For the theoretical results,
they relied on a discretization of the governing equation by Galerkin's method followed by the
application of the method of multiple scales (Nayfeh, 1981) to obtain the time variation of the
amplitude and phase of the motion as a function of the system and forcing parameters.

Anderson et al. (1996) experimentally observed that, for a primary excitation of the ®rst mode of a
cantilever, metallic beam, the curvature nonlinearity dominates the inertia nonlinearity. The resulting
frequency-response curve is bent to the right, revealing hardening-type nonlinearity. For a primary
excitation of the second mode, they found that the inertia nonlinearity dominates. In this case, the
frequency-response curve is bent to the left and the nonlinearity is of a softening type.

Berdichevsky et al. (1995) analytically studied the nonlinear vibrations of a cantilever, isotropic beam
excited at the free end. They found that, for a one-degree-of-freedom model, the dynamical response can
be explained in terms of a dynamical potential.

Experimental studies by Moon and Holmes (1985) on the vibration of a buckled elastic beam found
the existence of chaotic motions as the beam alternates between the two static equilibrium positions.

3. Experimental setup

Fig. 1 shows a schematic of the experimental setup for the vertically positioned beam. The beam was
made of SAE 1095 steel with the dimensions 84.45 cm� 0.81 mm� 1.57 cm. It was mounted through a
steel clamping ®xture attached to a shaker. A signal generator in line with a power ampli®er provided a
harmonic input signal to the shaker. This allowed for manual control of the excitation frequency and
amplitude. The output of the shaker was measured with an accelerometer placed on the clamping
®xture, whereas the response of the cantilever beam was measured with a 350 O strain gage mounted
approximately 2.54 cm from the ®xed end of the horizontal beam. These signals were subsequently
processed through an analog multi-channel low-pass ®lter set to a cut-o� frequency of 500 Hz. This
®lter also allowed for AC coupling of the signals. The power spectra of the transducer signals were
calculated in real time over a 40 Hz bandwidth (0.05 Hz frequency resolution) with a Hanning window
using a dynamic signal analyzer. At points of interest, the data were converted digitally through an A/D
card on a digital computer and stored for further characterization and processing.

For the beam, the investigation concentrated on a frequency range around the fourth natural
frequency of the beam. Once the beam was mounted, the only two control parameters were the
excitation frequency and amplitude. Sweeps were performed by varying either of these two parameters
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while keeping the other ®xed. These sweeps allowed for characterization of the nonlinear dynamics of
the beam by capturing jumps and multiple solutions in a methodical manner. At each increment of the
control parameter, we waited for a su�ciently long time, allowing for the transients to die away, before
recording the response. The spectrum of the strain gage was the key component in determining whether
a stationary state in the dynamics of the beam had been reached. Then, the magnitudes of the peaks in
the response spectrum associated with the natural frequencies of the beam were recorded. The collection
of such points produced the frequency- and amplitude-response curves that are shown in the results. The
magnitudes of the strains (in volts) associated with each peak were scaled by the frequency of each peak
to obtain a numerical measure that is proportional to the displacement. The calibration constant for the
strain gage would be necessary to convert to the actual displacement. Though, for higher modes,
dynamic calibration, using either an accelerometer or a laser vibrometer, is necessary (McConnell, 1995).

Fig. 1. A schematic of the experimental setup.
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For our purposes, a measurement proportional to displacement is su�cient. All documented motions
were observed to be planar.

4. Linear natural frequencies

The ®rst step in any vibration study is the determination of the linear natural frequencies. They are
then used as a starting point in the investigation of nonlinear phenomena. The natural frequencies of the
beam were found experimentally by using the frequency-response function of the analyzer. The inputs
processed included the accelerometer signal, measuring the amplitude of a random excitation, and the
strain gage signal, measuring the induced strain. The placement of the strain gage was based on the need
for a strong signal-to-noise ratio and the avoidance of being on or near the node of any of the vibration
modes of interest. Peaks in the amplitude portion of the frequency-response function were associated
with the linear natural frequencies of the beam. To increase con®dence in the experimentally obtained
natural frequencies, we measured the frequency-response functions at several low excitation levels. No
noticeable shifts in the peaks were observed. Also, a periodic checking of the natural frequencies of the
beam were performed to detect any fatigue damage (Ostachowicz and Krawczuk, 1991).

The linear natural frequencies of the cantilever beam in the vertical con®guration are listed in Table 1.
The Euler±Bernoulli values fail to accurately predict the ®rst natural frequency. The agreement improves
with each higher frequency for the ®rst four natural frequencies. The discrepancy is due to the e�ect of
gravity on the sti�ness of the cantilever beam. The second column in Table 1 shows the results from an
analysis incorporating the e�ect of gravity (Tabaddor, 1996)

5. Equation of motion

To study the nonlinear response of a cantilever beam, we apply the equations developed by Crespo da
Silva and Glynn (1978a). These equations are simpli®ed to the case of planar motion of a metallic
uniform cantilever beam to an external harmonic excitation. In addition, we add at this early point a
term quadratic in velocity and account for torsional ¯exibility of the clamped end in anticipation of
their future need. The integro-di�erential equation, under assumptions outlined in Ref. (Crespo da Silva
and Glynn, 1978a), then becomes
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Table 1

Natural frequencies of a cantilever beam, Hz

Mode No. Euler±Bernoulli E.B. w/gravity Experimental values

1 0.96 0.70 0.70

2 6.03 5.85 5.85

3 16.87 16.65 16.65

4 33.07 32.83 32.95
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The variables are de®ned as follows: m is the mass per unit length, L is the beam length, E is Young's
modulus, I is the area moment of inertia, v̂ is the transverse displacement, ŝ is the arclength, t̂ is time, âb

is the acceleration of the supported end of the beam, ĉ is the coe�cient of quadratic damping, Ô is the
frequency of the support motion, and m̂ is the linear viscous damping coe�cient. Note that the
displacement is a function of the arclength and time while all other variables are assumed to be
constant.

The ®rst two terms on the right-hand side of Eq. (1) are the nonlinear terms accounting for curvature
and inertia e�ects, respectively. The third term is the harmonic external base excitation while the last
term is the quadratic damping.

The boundary conditions for a beam with nonlinear support ¯exibility at one end are
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where k1 and k3 represent the linear and cubic rotational sti�ness coe�cients, respectively. The limiting
cases for an elastically restrained support at one end are the clamped-free (in®nite sti�ness) and pinned-
free (zero sti�ness) boundary conditions.

The next step is to nondimensionalize the equation of motion and boundary conditions.
Nondimensionalization allows for greater generality and simplicity in the analysis at the same time. We
choose to nondimensionalize the variables according to the following scheme:
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Using these variables, we rewrite Eq. (1) as
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We perform another scaling of the equation of motion and the boundary conditions. The purpose of
this scaling is to reduce the numerical values of the nonlinear coe�cients and help in the ordering of the
terms for application of the perturbation method. The scaling factor zn will be related to a linear natural
frequency of the system. The relationship is set to be on � z2n so that the natural frequency of interest
will become unity. The two independent variables are scaled according to s� � zns and t� � z2n t: Using
these scalings, we ®nd that the equation of motion becomes
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where the prime and overdot denote spatial and time derivatives, respectively, and the asterisk
superscript has been dropped. The oundary conditions become

v 00�1, t� � 0, v 000�1, t� � 0, v�0, t� � 0, v 00�0, t� � ~a1v 0�0, t� � ~a3v 0�0, t�3 �6�
where
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~a1 � k1L
EI

and ~a3 � k3L
EI

:

6. Perturbation solution

As in most nonlinear continuous systems, Eq. (5) subject to Eq. (6) is not amenable to a closed-form
solution. The ability to model the diverse dynamics embedded in such equations by analytical functions
might not be feasible. At this point, a solution can be obtained via numerical methods for a very speci®c
set of parameter values. With each change in the numerical value of a parameter, the equations subject
to the boundary conditions must be integrated anew. To develop any sort of parameter sensitivity or
bifurcation analysis would be computationally unwieldy. However, perturbation methods o�er an
alternate approach that can provide qualitative insight in addition to reliable quantitative results in a
relatively simple fashion.

6.1. Method of multiple scales

As the name implies, the method of multiple scales takes advantage of the scaling that appears to be
inherent in nature. This scaling can take many forms, but for problems of our interest, time is the focus.
This method takes advantage of the time scaling involved in the occurrence of nonlinear phenomena in
systems.

To apply the method of multiple scales requires that the equation of motion be in a suitable form.
The nondimensionalizations carried out in the earlier part of this paper were part of this process. One
®nal scaling is necessary. This involves de®ning the remaining parameters in terms of a small parameter
e: This parameter will act as a convenient expansion parameter and determine the ordering of the
various terms in the equation.

De®ning
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subject to

v�0, t� � 0, v 00�zn, t� � 0, v 000�zn, t� � 0, v 00�0, t� � a1v 0�0, t� � a3v 0�0, t�3 �7b�
where

a1 � k1L
EIzn

and a3 � k3Lzn
EI

: �8�

Now the foundation of the method of multiple scales is that time t can be broken down into a
succession of independent time scales given by the relationship Tn � ent (Nayfeh, 1981). The parameter e
can also serve as an expansion parameter for the dependent variable. The form of the expansion is
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v�s, T0, T1, . . . ; e� � ev1�s, T0, T1, . . . ; e� � e2v2�s, T0, T1, . . . ; e� � e3v3�s, T0, T1, . . . ; e� � � � � �9�
and the time derivatives become
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The procedure is to substitute Eqs. (9), (10a) and (10b) into Eqs. (7a) and (7b). Then the coe�cient of
each power of e is set equal to zero. The result is a hierarchy of linear equations and associated
boundary conditions. Restricting our analyses to the ®rst three orders, we have the following:
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Beginning with the ®rst-order equation and boundary conditions, Eq. (11), we seek a solution. This
solution then allows consideration of the next order equation, and so on. The ®rst-order equation is the
linear problem and this is what we turn to next.

6.2. First-order equation

The ®rst-order equation, with boundary conditions, Eq. (11), is a linear problem whose solution is
assumed in the following separable form:

v1�s, T0, . . . ; e� �
X1
m�1

�
jm�s�Am�T1, . . . �eiomT0 � cc

�
�14a�

where cc is the complex conjugate of the preceding term, om � z2m=z
2
n , and jm�s� is the linear mode
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shape. The linear mode shape for a free-elastically restrained beam (Chun, 1972) can be expressed as

jm�s� � ÿa1g�cos�s� ÿ cosh�s�� � g�sin�s� � sinh�s�� � �sin�s� ÿ sinh�s�� �14b�
where

a1 � sin�zn� cosh�zn� ÿ cos�zn� sinh�zn�
1� cosh�zn� cos�zn� , �14c�

g � 1� p

1ÿ p
,

and

p � cosh�zn� cos�zn� ÿ sinh�zn� sin�zn� � 1

cos�zn� cosh�zn� � sinh�zn� sin�zn� � 1
:

The orthogonality condition for the linear mode shapes is�zn
0

jm�s�jn�s� ds � dmnzn

where dmn is the Dirac delta function.
Since we are considering a single-mode response, only a one-term expansion of Eq. (14a) will be

considered, speci®cally, that consisting of the directly excited fourth mode �m � 4); that is,

v1 � A4j4�s�eiT0 � cc �14d�
This is an assumption that the other modes of the beam do not signi®cantly a�ect the motion of the
beam and that only the directly excited-mode determines the type of motion being observed (Nayfeh
and Mook, 1979).

6.3. Solvability conditions

Moving onto the second-order problem, we substitute Eq. (14a) into Eq. (12) and obtain

D2
0 v2 � viv2 � ÿ2D1A4ij4e

iT0

where o4 � 1: The solution at each order must insure uniformity of the expansion (9). This is known as
the solvability condition and will be presented in more detail for the third-order problem. For now we
state that the solvability condition together with the orthogonality condition leads to D1A4 � 0 which
implies that the coe�cient A4 is not a function of T1: It can be determined by imposing the solvability
condition for the third-order problem. So v2 is trivial.

At this point, it is prudent to introduce a detuning parameter s that is a measure of the nearness of
the forcing frequency to the frequency of the fourth mode. It is de®ned according to the relation: O �
o4 � e2s:

For the solution of the third-order problem, Eq. (13), we assume that

v3 � V3�s, T2, . . . �eiT0 � cc: �15�
We substitute Eqs. (15) and (14d) into Eq. (13), recall that v2 � 0, and arrive at
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The solvability condition insures uniformity of the expansion of the dependent variable; it is found by
using the concept of adjoint. To begin, the ®rst of Eq. (16) is multiplied by the adjoint C and integrated
as follows:�zn
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C
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ds �
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To determine the adjoint problem, we follow the procedure outlined in Ref. (Nayfeh, 1981) and ®nd
that the third-order problem is self-adjoint; that is, C � j4: Consequently, the solvability condition
becomes�z4

0

j4H dsÿ 3a3j 0 44�0�A2
4

�A4 � 0: �18�

Integrating Eq. (18) and applying the polar transformation A4 � 1
2a4e

ib4 , we obtain the following
modulation equations governing the amplitude and phase of the fourth mode:
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where W � sT2 ÿ b4 and d1 denotes the e�ective nonlinear coe�cient (excluding damping) in the
solvability condition, Eq. (18). It is given by
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To study the solutions of Eq. (19), we begin with the constant solutions (®xed points), which correspond
to periodic motions of the beam. To this end, we set the time variation of the amplitude and phase in
Eq. (19) equal to zero. The stability of the ®xed points can be found by investigating the eigenvalues of
the Jacobian of Eq. (19). It follows from Eq. (20) that if we neglect the contribution of the nonlinear
torsional spring and consider only a clamped-free beam, the sign of the nonlinear coe�cient is
determined by the relative contributions of the nonlinear curvature and inertia terms. For the ®rst
mode, the nonlinear curvature term dominates and the frequency-response curve will display a
hardening-type behavior. For higher modes, the nonlinear inertia term is larger than the nonlinear
curvature term and, therefore, the frequency-response curve displays a softening- type behavior.
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Inclusion of the nonlinear (cubic) elastic element at the boundary allows for the further hardening (or
softening) of the frequency-response curve, depending on whether the nonlinear sti�ness coe�cient is
negative (or positive).

Solving for the ®xed points, we set the right-hand side of Eq. (19) equal to zero. Using some algebraic
manipulations, we reduce the two equations to one single equation known as the frequency-response
equation written as"�

1

2
m� �ca4

�2

�
�
s� 1

8
d1a2

4

�2
#
a2
4 �

a2
b

z24
: �21�

For most of our experiments, the detuning parameter and the forcing amplitude comprise the control
parameters. Fixing one control parameter while varying the other provides a set of plots that detail the
pattern of behavior of the ®xed points (i.e., periodic motions of the beam). In the following sections, we
compare theoretical and experimental results for such plots for a response consisting of the fourth mode
of the beam.

7. Clamped-free boundary conditions

In this section, we attempt to match the experimental results with the above theoretical analysis. The

Fig. 2. Experimentally and theoretically (clamped-free ends) obtained frequency-response curves for an excitation amplitude of 0.7

g.
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experimental results of the fourth-mode responses of the horizontal beam are shown in Fig. 2. The
theoretical results involve the assumption of a perfectly clamped end. The comparison may reveal
de®ciencies in the model and/or experiment.

For the experimental results, we consider the fourth-mode response �z4110:996� of the horizontal
cantilever beam, speci®cally, the frequency-response curves for an excitation amplitude of 0.7 g and the
amplitude-response curves for an excitation frequency of 32.00 Hz. Assuming clamped-free conditions in
the analysis, we ®nd that d117557 �17952ÿ 395�, which combines the contributions from the inertia
nonlinearity (ÿ395) and the curvature nonlinearity (7952). From the half-power point, we ®nd that the
damping ratio x̂ � 0:001: Fig. 2 shows a comparison between the theoretically (Eq. (21)) and
experimentally obtained frequency-responses curves. Two discrepancies were found. The ®rst (not
shown) is that the frequency±response curve with only a linear viscous damping term exhibited a jump
down frequency very far from the experimental jump down frequency. The inclusion of quadratic
damping allowed for a curve ®tting process whereby the jump down frequency for the theoretical results
was forced to match that of the experimental results by choosing an appropriate quadratic damping
coe�cient. The addition of the quadratic damping for a blunt body is physically reasonable as the large
de¯ections observed during the experiment most probably gave rise to signi®cant air damping, which is
proportional to the square of the velocity. The second obvious discrepancy is the di�erence in the slopes
of the theoretically and experimentally obtained frequency-response curves. The experimentally obtained
frequency-response curve is softer than the theoretically obtained frequency-response curve. This implies
that the nonlinear coe�cient d1 requires modi®cation. Possible sources of this revision are discussed in
the next section.

8. Error analysis

The di�erence in the slopes of the experimentally and theoretically obtained frequency-response curves
may have several sources. Each source may a�ect either the experimental or theoretical results. We note
that, in a comparison between experimental and theoretical results, sometimes it is taken for granted
that the experimental results are the correct ones and that one should strive to match theory to
experiment. However, it may happen that the experimental results will need to be adjusted. Errors in
measurement, transducer placement, and faulty calibration curves are just a few of the possible sources
of error in experimental measurements (Wilson, 1996; Dally et al., 1993). We hypothesize three possible
sources that may be responsible for the discrepancy, namely,

1. nonlinear strain gage calibration curve,
2. midplane stretching, and
3. nonlinear sti�ness at the clamped boundary.

The nonlinear strain gage calibration curve may be due to unusually large strains induced by vibrations
of the beam. This would most likely harden the experimental data points, thereby bringing them closer
to the theoretical results. From the literature and manufacturer information, this source was found to be
an unlikely culprit. Attempts to obtain a dynamic calibration curve for the fourth mode by placing an
accelerometer on the beam to provide displacement related measurements in conjunction with strain
measurements proved inconclusive. Also such measurement may include the e�ect of the second possible
error source, midplane stretching. The theoretical development is based on the assumption of
inextensionality of the midplane of the beam. This is found to be very adequate for beams with one end
unrestrained. However, it is an assumption and possibly, under very large de¯ections and curvatures, the
midplane stretching e�ect may become important. This e�ect was much harder to measure and, once
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again, a search through the literature on this topic made the likelihood of midplane stretching very
small. The inclusion of midplane stretching would have hardened the theoretical results.

Finally, consideration of a nonideal-clamping boundary led us to perform an exploratory experiment
whereby two small accelerometers were placed on the clamping ®xture. One was centered while the other
was placed close to the edge of the clamp, on the side where the beam was extending out. As forcing
frequency and amplitude sweeps were performed, we observed a signi®cant relative change in
acceleration levels between the two transducers. At low levels, the accelerations matched quite well,
while during large-amplitude motions the accelerometer closer to the edge displayed larger values than
those displayed by the center accelerometer. Note that all motions were restricted to unimodal responses
consisting of the fourth mode. A comparison of the readings of the center and edge accelerometers
revealed a hardening-type behavior. Therefore, the inclusion of a hardening-type spring at the clamped
end would appear to be the most viable explanation of the di�erence between the experimentally and
theoretically obtained frequency-response curves. As a qualifying insight, the di�erence in acceleration
levels may be due to ¯exure of the metallic clamping ®xture and/or rotation of the shaker armature to
which the clamping ®xture is attached. From our experience in the laboratory, the latter is the more
likely source. However, from a modeling point of view, the mathematical formulation is the same for
both. So in the next section, we re®ne our analysis to include boundary ¯exibility and re-examine the
results vis-a-vis the experimental data.

9. Nonideal clamps

Next we consider the case of a torsional spring with linear and cubic sti�ness terms in the theoretical
analysis. By incorporating the boundary ¯exibility, we have introduced two additional unknowns into
our analysis, the linear and cubic sti�ness coe�cients. The linear sti�ness coe�cient can be found by
taking the ®rst experimentally obtained linear natural frequency and substituting it into Eq. (14c). Then
we deduce the value of the cubic sti�ness term by curve ®tting the theoretically obtained frequency-
response curve for one excitation amplitude. Again, we use the experimental jump down frequency to
ascertain the value of the quadratic-damping coe�cient. Once these parameters are determined, we
check whether the remaining theoretically obtained frequency- and amplitude-response curves match the
experimentally obtained curves. Reasonable agreement will thereby lend credibility to the assertion that
the previously observed discrepancy is attributable to a nonideal-clamping boundary.

First, we need to estimate the linear sti�ness coe�cient. The value for a1 is found by improving the
agreement between the theoretically and experimentally obtained linear natural frequencies. We ®nd that
a change in the value of the linear sti�ness term only a�ects the second decimal of z4 (Blevins, 1979). As
such, we chose z4110:977 as a value that best ®t the ®rst four natural frequencies of our beam. This
choice gives a1zn1581: Next we consider the frequency-response curve for an excitation amplitude of
0.7 g. Performing the curve ®tting, we ®nd that we can match the theoretically and experimentally
obtained frequency-response curves as shown in Fig. 3. We ®nd the value for the quadratic damping
coe�cient, ĉ10:33, from the curve ®tting the jump down frequency of the theoretical model to the
experimentally obtained jump down frequency and d114560 from the curve ®tting the backbone curve
of the experimentally obtained frequency-response curve and using this value for the theoretical model.
Using these values and Eqs. (8) and (20), we can then estimate that a31107: From the half-power point
method, we ®nd m10:0003: Using these values, we obtain an equally excellent match between the
experimentally and theoretically obtained frequency-response curves for an excitation amplitude of 0.9 g
as shown in Fig. 4. As an additional boost to con®dence, we compare the theoretically and
experimentally obtained amplitude-response curves in Fig. 5 for an excitation frequency of 32 Hz. Again
a fairly good match is realized. A ®nal ®ne tuning was performed where the forcing amplitude was
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adjusted. It was found that a 10% reduction in the forcing amplitudes improved the agreement. The
physical explanation for this apparent energy loss is that the measured input signal is from the
accelerometer placed on the clamping ®xture. This signal is then transformed into the frequency domain
by the dynamic signal analyzer. The magnitude of the peak in the spectrum at the forcing frequency is
then assumed to be the total forcing amplitude. However, some structural feedback to the shaker occurs
at the same frequency, which would result in an observed increase in the magnitude of the forcing. The
contributions from these di�erent sources cannot be separated in the frequency domain. Therefore, the
actual force imparted to the beam by the shaker is lower.

Since the choice of the expansion parameter a�ects the coe�cients of the terms in the expansion, a
®nal step is required. The forcing frequency, forcing amplitude, and linear viscous damping were the
experimentally obtained parameters that were fed into the theoretical model by scaling the values
according to the transformations outlined in previous sections. However, the scalings and perturbation
solution require a numerical value for one last parameter, the perturbation parameter e: Though in some
cases, the perturbation parameter is a physical variable, in this case, it is only an expansion parameter
whose choice is not entirely arbitrary. For this case, we chose e10:01: To complete the perturbation
analysis, we need to evaluate the smallness of our perturbation terms based on our particular choice of
the perturbation parameter. We use the chosen value of the perturbation parameter to check that the
ratio �k3=k1�e2 � 1 is satis®ed to insure the validity of our perturbation expansion. Using the estimated

Fig. 3. Experimentally and theoretically (spring-hinged-free end) obtained frequency-response curves for an excitation amplitude of

0.7 g.
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values for the boundary sti�ness coe�cients, we ®nd that �k3=k1�e21�a3=a1z2n �10:01: If this check had
failed, then a smaller value of the perturbation parameter would have been needed.

An alternate procedure for checking the validity of perturbation expansion would involve comparing
the multiple-scales solution with a solution obtained by integrating the original di�erential equation.

10. Summary

The unimodal dynamics of a cantilever beam subjected to a harmonic external excitation was
examined both experimentally and theoretically for the fourth mode. The experimentally obtained
frequency-response curves exhibit hardening-type nonlinearity. However, in a comparison with the
theoretical analysis for an ideal clamp, we found a large discrepancy. This discrepancy was found to be
due to two sources: air damping and boundary ¯exibility. The source of the boundary ¯exibility can be
attributed to clamping ¯exibility and/or lateral displacements of the shaker armature. The air damping
was modeled by adding a quadratic damping term while the boundary ¯exibility was modeled by
replacing the clamped end boundary condition by a torsional spring. This rotational elastic element
possesses linear and cubic sti�ness components. The addition of these two elements to our model was
found to improve dramatically the agreement between the experimentally and theoretically obtained
frequency- and amplitude- response curves.

Fig. 4. Experimentally and theoretically (spring-hinged-free ends) obtained frequency-response curves for an excitation amplitude

of 0.9 g.

M. Tabaddor / International Journal of Solids and Structures 37 (2000) 4915±4931 4929



Acknowledgements

The author would like to acknowledge the tremendous insight and compassion of Dr. Ali H. Nayfeh.
Furthermore, the author would be remiss not to mention the down in the trenches, everyday help of Dr.
Jon Pratt (NIST) and Wayne Kreider. Finally, the author extends his deepest thanks for the insightful
comments and suggestions of the reviewers.

References

Anderson, T.J., Nayfeh, A.H., Balachandran, 1996. Experimental veri®cation of the importance of the nonlinear curvature in the

response of a cantilever beam. Journal of Vibration and Acoustics 118, 21±27.

Berdichevsky, V.L., Kim, W.W., Ozbek, A., 1995. Dynamical potential for nonlinear vibrations of cantilevered beams. Journal of

Sound and Vibration 179, 151±164.

Blevins, R.D., 1979. Formulas for Natural Frequency and Mode Shape. Van Nostrand Publishers, New York.

Boutaghou, Z.E., Erdman, A.G., 1989. On the dynamics of Timoshenko/Euler±Bernoulli beams: a uni®ed approach. ASME

Design Engineering 18 (3), 69±73.

Chun, K.R., 1972. Free vibration of a beam with one end spring-hinged and the other free. Journal of Applied Mechanics 39,

1154±1155.

Crespo da Silva, M.R.M., 1991. Equations for nonlinear analysis of 3D motions of beams. Applied Mechanics Review 44, S51±59.

Fig. 5. Experimentally and theoretically (spring-hinged-free ends) obtained amplitude-response curves for an excitation frequency

of 32.00 Hz.

M. Tabaddor / International Journal of Solids and Structures 37 (2000) 4915±49314930



Crespo da Silva, M.R.M., Glynn, C.C., 1978a. Nonlinear ¯exural±¯exural±torsional dynamics of inextensional beams. Part I:

Equations of motion. Journal of Structural Mechanics 6, 437±448.

Crespo da Silva, M.R.M., Glynn, C.C., 1978b. Nonlinear ¯exural±¯exural±torsional dynamics of inextensional beams. Part II:

Forced motions. Journal of Structural Mechanics 6, 449±461.

Dally, J.W., Riley, W.F., McConnell, K.G., 1993. Instrumentation for Engineering Measurements. Wiley, New York.

Donnell, L.H., 1976. Beams, Plates, and Shells. McGraw-Hill, New York.

Dowell, E.H., Traybar, J., Hodges, D.H., 1977. An experimental±theoretical correlation study of nonlinear bending and torsion

deformations of a cantilever beam. Journal of Sound and Vibration 50, 533±544.

Gorman, D.J., 1975. Free Vibration Analysis of Beams and Shafts. Wiley, New York.

Haering, W.J., Ryan, R.R., Scott, R.A., 1992. A new ¯exible body dynamic formulation for beam structures undergoing large

overall motions. In: Proceedings of the 33rd Structures, Structural Dynamics, and Materials Conference, Dallas, TX.

Hodges, D.H., 1984. Proper de®nition of curvature in nonlinear beam kinematics. AIAA Journal 22, 1825±1827.

Hodges, D.H., 1987a. Finite rotation and nonlinear beam kinematics. Vertica 11, 297±307.

Hodges, D.H., 1987b. Noninear beam kinematics for small strains and ®nite rotations. Vertica 11, 573±589.

Hodges, D.H., Crespo da Silva, M.R.M., Peters, D.A., 1988. Nonlinear e�ects in the static and dynamic behavior of beams and

rotor blades. Vertica 12, 243±256.

Love, A.E.H., 1944. A Treatise on the Mathematical Theory of Elasticity. Dover, New York.

McConnell, K.G., 1995. Vibration Testing. Wiley, New York.

Moon, F.C., Holmes, P.J., 1985. Double-poincare sections of a quasi-periodically forced chaotic attractor. Physical Letters A 111,

157±160.

Nayfeh, A.H., 1973. Perturbation Methods. Wiley, New York.

Nayfeh, A.H., 1981. Introduction to Perturbation Techniques. Wiley, New York.

Nayfeh, A.H., Balachandran, B., 1995. Applied Nonlinear Dynamics. Wiley, New York.

Nayfeh, A.H., Mook, D.T., 1979. Nonlinear Oscillations. Wiley, New York.

Nayfeh, A.H., Mook, D.T., Lobitz, D.W., 1974. Numerical±perturbation method for the nonlinear analysis of structural

vibrations'. AIAA Journal 12, 1222±1228.

Nayfeh, A.H., Pai, P.F., 1996. Linear and Structural Mechanics. Wiley, New York.

Oden, J.T., Bathe, K.J., 1978. A commentary on computational mechanics. Applied Mechanics Review 31, 1053±1058.

Ostachowicz, W.M., Krawczuk, M., 1991. Analysis of the e�ect of cracks on the natural frequencies of a cantilever beam. Journal

of Sound and Vibration 150, 191±201.

Pai, P.F., Nayfeh, A.H., 1990. Three-dimensional nonlinear vibrations of composite beams. Part I: Equations of motion. Nonlinear

Dynamics 1, 477±502.

Pai, P.F., Nayfeh, A.H., 1992. A nonlinear composite beam theory. Nonlinear Dynamics 3, 273±303.

Suleman, A., Modi, V.J., Venkayya, V.B., 1995. Structural modeling issues in ¯exible systems. AIAA Journal 33, 919±923.

Tabaddor, M., 1996. Nonlinear Vibration of Beam and Multibeam Systems. Ph.D. Dissertation, Virginia Polytechnic Institute and

State University, Blacksburg, VA.

Tabaddor, M., Nayfeh, A.H., 1997. An experimental investigation of multimode responses in a cantilever beam. Journal of

Vibration and Acoustics 119 (4), 532±538.

Wilson, J., 1996. A Bit More (or Less) Accuracy? Test Engineering and Management, April/May, pp. 12±13.

Zavodney, L.D., Nayfeh, A.H., 1989. The non-linear response of a slender beam carrying a lumped mass to a principal parametric

excitation: theory and experiment. International Journal of Non-Linear Mechanics 24, 105±125.

M. Tabaddor / International Journal of Solids and Structures 37 (2000) 4915±4931 4931


